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ABSTRACT Coastal regions experiencing declining dissolved oxygen are increasing
in number and severity around the world. However, despite the importance of mi-
crobial metabolism in coastal hypoxia, few metagenomic surveys exist. Our data set
from within the second largest human-caused hypoxic region provides opportunities
to more deeply explore the microbiology of these systems.

Marine systems suffering from declines in dissolved oxygen (DO) are becoming
more numerous across the globe (1). Many coastal regions experience hypoxia

(DO, �2 mg liter�1) due to eutrophication from farmland runoff, stratification, and a
resulting cascade of microbial processes that consume DO. The northern Gulf of Mexico
experiences seasonal bottom water hypoxia that can exceed 22,000 km2 (http://www
.noaa.gov/media-release/gulf-of-mexico-dead-zone-is-largest-ever-measured), impact-
ing fisheries and other coastal industries (2). To better understand the microbiology of
this system, we sequenced bacterioplankton metagenomes from the 2013 hypoxic
region. We previously reported the metabolic contributions from members of unculti-
vated groups of bacterioplankton (3); however, considerable sequence information for
other taxa remains unanalyzed. Here, we report the unbinned metagenomic coassem-
bly of six samples and 50 bacterioplankton metagenome-assembled genome (MAG)
sequences.

Site selection, marine chemistry metadata, and extraction, sequencing, and assem-
bly methods were previously described (3, 4). Briefly, metagenomes from the six sites
were obtained using one lane of an Illumina HiSeq 2000 instrument (100-bp paired-end
sequencing generated by Argonne National Laboratory). Coassembly of all six samples
was performed using IDBA-UD (5), resulting in 28,028 contigs of �3 kbp (303 contigs
were �50 kbp, 72 were �100 kbp, and the largest was 494,909 bp). Integrated
Microbial Genomes with Microbiome Samples (IMG/G) (6) annotation predicted 220,893
and 3,176 protein-coding and RNA genes, respectively. Separately, we binned contigs
into MAGs (3). The 50 MAGs reported here are distributed in the following taxonomic
affiliations (see the Methods section in reference 3): Actinobacteria (n � 12), Alphapro-
teobacteria (n � 5), Bacteroidetes (n � 6), Gammaproteobacteria (n � 3), Gemmati-
monidetes (n � 1), Ignavibacteriae (n � 2), Nitrospina (n � 5), Planctomycetes (n � 7),
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Proteobacteria (n � 1), Synechococcus (n � 3), Verrucomicrobia (n � 3), and unclassified
(n � 2). Twenty-four of the MAGs were estimated at �50% complete, with 16 estimated
at �75% complete based on CheckM (7) (see Table S1 at https://doi.org/10.6084/m9
.figshare.6911729.v1). All but 2 MAGs had estimated contamination of �9%, with 40
having estimated contamination of �3%. While several of our Actinobacteria MAGs
grouped with sequences near the important OM1 clade of marine Actinobacteria (8–10),
these are not expected to be true OM1 organisms (see Figure S1 in reference 3 and
Table S1 at https://doi.org/10.6084/m9.figshare.6911729.v1), but make useful refer-
ences for future studies of the group.

Metabolic reconstruction and carbohydrate-active enzyme (CAZyme) prediction
were also completed as described (see reference 3 and Table S1 at https://doi.org/10
.6084/m9.figshare.6911729.v1). Nitrospina MAGs were the only ones with predicted
nitrite-oxidizing metabolism, matching observations from 2012 (11). While the majority
of MAGs encoded aerobic metabolism, several taxa additionally had partial to complete
pathways for dissimilatory nitrate and/or sulfate reduction (Rhodospirillales and Polar-
ibacter), including dissimilatory nitrate reduction to ammonium, and a few had pre-
dicted capacity for sulfur lithotrophy and possible autotrophy (Chromatiales, Rhodospi-
rillales, and Donghicola) (see Table S1 at https://doi.org/10.6084/m9.figshare.6911729
.v1). Future comparisons of these data with those from other low-DO systems will
illuminate common functional features associated with hypoxia and also provide
information about biogeographic distinctions among taxa associated with these re-
gimes.

Data availability. The shotgun sequence data are available the NCBI Sequence
Read Archive (SRA) database under the accession numbers SAMN05791315 to
SAMN05791320, which comply with MIxS standards (12). The annotated contigs of �3
kbp are publicly available at IMG/M under organism ID (OID) 3300003894. The MAGs
are publicly available at IMG/M under the following OIDs: 2651870013 to 2651870024,
2651870028 to 2651870030, 2651870044 to 2651870048, 2651870056, 2651870059 to
2651870064, 2651870067 to 2651870071, 2651870074 to 2651870082, 2651870084,
2651870085, 2651870087, 2651870089, 2693429794 to 2693429796, 2693429800, and
2693429806. For a spreadsheet containing tabs that detail CheckM results, taxonomy,
IMG/M information, metabolic reconstructions, and transporter and CAZy predictions,
see Table S1 at https://doi.org/10.6084/m9.figshare.6911729.v1.
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